TreeSet和TreeMap Java 中的TreeSet直接使用了TreeMap来实现,当向TreeSet中存放值时,实际保存在TreeMap的Key中,所有的value都是同一个Object对象。
1 2 3 public TreeSet () { this (new TreeMap<E,Object>()); }
对于 TreeMap 来说,它采用一种被称为“红黑树”的排序二叉树来保存 Map 中每个 Entry —— 每个 Entry 都被当成“红黑树”的一个节点对待。
1 2 3 4 5 6 7 8 static final class Entry <K ,V > implements Map .Entry <K ,V > { K key; V value; Entry<K,V> left; Entry<K,V> right; Entry<K,V> parent; boolean color = BLACK; }
排序二叉树 红黑树是一种自平衡排序二叉树,排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索。排序二叉树要么是一棵空二叉树,要么是具有下列性质的二叉树:
若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
它的左、右子树也分别为排序二叉树。
排序二叉树的插入过程 当程序希望添加新节点时:系统总是从树的根节点开始比较 —— 即将根节点当成当前节点,如果新增节点大于当前节点、并且当前节点的右子节点存在,则以右子节点作为当前节点;如果新增节点小于当前节点、并且当前节点的左子节点存在,则以左子节点作为当前节点;如果新增节点等于当前节点,则用新增节点覆盖当前节点,并结束循环 —— 直到找到某个节点的左、右子节点不存在,将新节点添加该节点的子节点 —— 如果新节点比该节点大,则添加为右子节点;如果新节点比该节点小,则添加为左子节点。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 public V put (K key, V value) { Entry<K,V> t = root; if (t == null ) { compare(key, key); root = new Entry<>(key, value, null ); size = 1 ; modCount++; return null ; } int cmp; Entry<K,V> parent; Comparator<? super K> cpr = comparator; if (cpr != null ) { do { parent = t; cmp = cpr.compare(key, t.key); if (cmp < 0 ) t = t.left; else if (cmp > 0 ) t = t.right; else return t.setValue(value); } while (t != null ); } else { if (key == null ) throw new NullPointerException(); Comparable<? super K> k = (Comparable<? super K>) key; do { parent = t; cmp = k.compareTo(t.key); if (cmp < 0 ) t = t.left; else if (cmp > 0 ) t = t.right; else return t.setValue(value); } while (t != null ); } Entry<K,V> e = new Entry<>(key, value, parent); if (cmp < 0 ) parent.left = e; else parent.right = e; fixAfterInsertion(e); size++; modCount++; return null ; }
二叉查找树删除过程 当程序从排序二叉树中删除一个节点之后,为了让它依然保持为排序二叉树,程序必须对该排序二叉树进行维护。维护可分为如下几种情况:
被删除的节点是叶子节点,则只需将它从其父节点中删除即可。
被删除节点 p 只有左子树,将 p 的左子树 pL 添加成 p 的父节点的左子树即可;被删除节点 p 只有右子树,将 p 的右子树 pR 添加成 p 的父节点的右子树即可。
若被删除节点 p 的左、右子树均非空,有两种做法:
将 pL 设为 p 的父节点 q 的左或右子节点(取决于 p 是其父节点 q 的左、右子节点),将 pR 设为 p 节点的中序前趋节点 s 的右子节点(s 是 pL 最右下的节点,也就是 pL 子树中最大的节点)。
以 p 节点的中序前趋或后继替代 p 所指节点,然后再从原排序二叉树中删去中序前趋或后继节点即可。(也就是用大于 p 的最小节点或小于 p 的最大节点代替 p 节点即可)。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 private void deleteEntry (Entry<K,V> p) { modCount++; size--; if (p.left != null && p.right != null ) { Entry<K,V> s = successor(p); p.key = s.key; p.value = s.value; p = s; } Entry<K,V> replacement = (p.left != null ? p.left : p.right); if (replacement != null ) { replacement.parent = p.parent; if (p.parent == null ) root = replacement; else if (p == p.parent.left) p.parent.left = replacement; else p.parent.right = replacement; p.left = p.right = p.parent = null ; if (p.color == BLACK) fixAfterDeletion(replacement); } else if (p.parent == null ) { root = null ; } else { if (p.color == BLACK) fixAfterDeletion(p); if (p.parent != null ) { if (p == p.parent.left) p.parent.left = null ; else if (p == p.parent.right) p.parent.right = null ; p.parent = null ; } } }
红黑树 排序二叉树虽然可以快速检索,但在最坏的情况下:如果插入的节点集本身就是有序的,要么是由小到大排列,要么是由大到小排列,那么最后得到的排序二叉树将变成链表:所有节点只有左节点(如果插入节点集本身是大到小排列);或所有节点只有右节点(如果插入节点集本身是小到大排列)。在这种情况下,排序二叉树就变成了普通链表,其检索效率就会很差。
为了改变排序二叉树存在的不足,Rudolf Bayer 与 1972 年发明了另一种改进后的排序二叉树:红黑树,他将这种排序二叉树称为“对称二叉 B 树”,而红黑树这个名字则由 Leo J. Guibas 和 Robert Sedgewick 于 1978 年首次提出。
Java 实现的红黑树将使用 null 来代表空节点,因此遍历红黑树时将看不到黑色的叶子节点,反而看到每个叶子节点都是红色的。
性质 1:每个节点要么是红色,要么是黑色。 性质 2:根节点永远是黑色的。 性质 3:所有的叶节点都是空节点(即 null),并且是黑色的。 性质 4:每个红色节点的两个子节点都是黑色。(从每个叶子到根的路径上不会有两个连续的红色节点) 性质 5:从任一节点到其子树中每个叶子节点的路径都包含相同数量的黑色节点。
红黑树并不是真正的平衡二叉树,但在实际应用中,红黑树的统计性能要高于平衡二叉树,但极端性能略差。由此我们可以得出结论:对于给定的黑色高度为 N 的红黑树,从根到叶子节点的最短路径长度为 N-1(连续N个黑色节点),最长路径长度为 2 * (N-1)(红黑相间)。
红黑树通过上面这种限制来保证它大致是平衡的——因为红黑树的高度不会无限增高,这样保证红黑树在最坏情况下都是高效的,不会出现普通排序二叉树的情况。由于红黑树只是一个特殊的排序二叉树,因此对红黑树上的只读操作与普通排序二叉树上的只读操作完全相同,只是红黑树保持了大致平衡,因此检索性能比排序二叉树要好很多。 但在红黑树上进行插入操作和删除操作会导致树不再符合红黑树的特征,因此插入操作和删除操作都需要进行一定的维护,以保证插入节点、删除节点后的树依然是红黑树。
红黑树的数据结构如下:
1 2 3 4 5 6 7 class Node <T > { public T value; public Node<T> parent; public boolean isRed; public Node<T> left; public Node<T> right; }
红黑树和AVL树 AVL是一种平衡二叉树,以其发明者Adelson-Velskii和Landis命名。平衡二叉树的定义如下:
左右子树高度差小于1
每一个子树均为平衡二叉树
为了保证二叉树的平衡,AVL树引入监督机制,在树的某一部分的不平衡度超过一个阈值后触发相应的平衡操作,保证树的平衡度在可接受的范围内。二叉树的平衡化有两大基础操作:左旋和右旋。左旋是逆时针旋转,右旋是顺时针旋转。旋转在整个平衡化过程中可能进行一次或多次。这两种操作都是从失去平衡的最小树根节点开始的(离插入节点最近且平衡因子超过1的祖节点)。
由于AVL树维护高度平衡所付出的代价较高,实际应用不如红黑树广泛。如果应用场景中对插入删除不频繁,只对查找要求高,那么AVL树优于红黑树。红黑树广泛用于C++的STL中,如地图和集;Linux的进程调度完全公平调度程序用红黑树管理进程控制块,进程的虚拟内存区域存储在一棵红黑树上,每个虚拟地址区域对应红黑树的一个节点,左指针指向相邻地址虚拟存储区域,右指针指向相邻的高地址虚拟地址空间;IO多路复用的epoll的实现采用红黑树组织管理socketId,用以支持快速的增删改查;Nginx中用红黑树管理定时器,由于红黑树是有序的,可以快速得到距离当前最小的定时器;Java中的TreeMap、TreeSet以及jdk1.8之后的hashMap底层都用到了红黑树。
插入后的修复 新插入的节点是红色的,插入修复操作遇到父节点为黑结束。也就是只有父节点为红色时需要插入修复操作
在插入操作中,红黑树的性质 1 和性质 3 两个永远不会发生改变,因此无需考虑红黑树的这两个特性。
下面将分情况进行介绍。在介绍中,我们把新插入的节点定义为 N 节点,N 节点的父节点定义为 P 节点,P 节点的兄弟节点定义为 U 节点,P 节点父节点定义为 G 节点。下面分成不同情形来分析插入操作
情形 1:新节点 N 是树的根节点,没有父节点
在这种情形下,直接将它设置为黑色以满足性质 2。
情形 2:新节点的父节点 P 是黑色
在这种情况下,新插入的节点是红色的,因此依然满足性质 4。而且因为新节点 N 有两个黑色叶子节点;但是由于新节点 N 是红色,通过它的每个子节点的路径依然保持相同的黑色节点数,因此依然满足性质 5。
情形 3:如果父节点 P 和父节点的兄弟节点 U 都是红色 在这种情况下,程序应该将 P 节点、U 节点都设置为黑色,并将 P 节点的父节点设为红色(用来保持性质 5)。现在新节点 N 有了一个黑色的父节点 P。由于从 P 节点、U 节点到根节点的任何路径都必须通过 G 节点,在这些路径上的黑节点数目没有改变(原来有叶子和 G 节点两个黑色节点,现在有叶子和 P 两个黑色节点)。经过上面处理后,红色的 G 节点的父节点也有可能是红色的,这就违反了性质 4,因此还需要对 G 节点递归地进行整个过程(把 G 当成是新插入的节点进行处理即可)。
情形 4:父节点 P 是红色、而其兄弟节点 U 是黑色或缺少;且新节点 N 是父节点 P 的右子节点,而父节点 P 又是其父节点 G 的左子节点。 在这种情形下,我们进行一次左旋转对新节点和其父节点进行,接着按情形 5 处理以前的父节点 P(也就是把 P 当成新插入的节点即可)。这导致某些路径通过它们以前不通过的新节点 N 或父节点 P 的其中之一,但是这两个节点都是红色的,因此不会影响性质 5。
情形 5:父节点 P 是红色、而其兄弟节点 U 是黑色或缺少;且新节点 N 是其父节点的左子节点,而父节点 P 又是其父节点 G 的左子节点。 在这种情形下,需要对节点 G 的一次右旋转,在旋转产生的树中,以前的父节点 P 现在是新节点 N 和节点 G 的父节点。由于以前的节点 G 是黑色,否则父节点 P 就不可能是红色,我们切换以前的父节点 P 和节点 G 的颜色,使之满足性质 4,性质 5 也仍然保持满足,因为通过这三个节点中任何一个的所有路径以前都通过节点 G,现在它们都通过以前的父节点 P。在各自的情形下,这都是三个节点中唯一的黑色节点。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 private void fixAfterInsertion (Entry<K,V> x) { x.color = RED; while (x != null && x != root && x.parent.color == RED) { if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { Entry<K,V> y = rightOf(parentOf(parentOf(x))); if (colorOf(y) == RED) { setColor(parentOf(x), BLACK); setColor(y, BLACK); setColor(parentOf(parentOf(x)), RED); x = parentOf(parentOf(x)); } else { if (x == rightOf(parentOf(x))) { x = parentOf(x); rotateLeft(x); } setColor(parentOf(x), BLACK); setColor(parentOf(parentOf(x)), RED); rotateRight(parentOf(parentOf(x))); } } else { Entry<K,V> y = leftOf(parentOf(parentOf(x))); if (colorOf(y) == RED) { setColor(parentOf(x), BLACK); setColor(y, BLACK); setColor(parentOf(parentOf(x)), RED); x = parentOf(parentOf(x)); } else { if (x == leftOf(parentOf(x))) { x = parentOf(x); rotateRight(x); } setColor(parentOf(x), BLACK); setColor(parentOf(parentOf(x)), RED); rotateLeft(parentOf(parentOf(x))); } } } root.color = BLACK; }
删除节点后的修复 与添加节点之后的修复类似的是,TreeMap 删除节点之后也需要进行类似的修复操作,通过这种修复来保证该排序二叉树依然满足红黑树特征。
只有删除黑色节点时才需要删除修复操作,总体思想是从兄弟节点借调黑色节点
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 private void fixAfterDeletion (Entry<K,V> x) { while (x != root && colorOf(x) == BLACK) { if (x == leftOf(parentOf(x))) { Entry<K,V> sib = rightOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); setColor(parentOf(x), RED); rotateLeft(parentOf(x)); sib = rightOf(parentOf(x)); } if (colorOf(leftOf(sib)) == BLACK && colorOf(rightOf(sib)) == BLACK) { setColor(sib, RED); x = parentOf(x); } else { if (colorOf(rightOf(sib)) == BLACK) { setColor(leftOf(sib), BLACK); setColor(sib, RED); rotateRight(sib); sib = rightOf(parentOf(x)); } setColor(sib, colorOf(parentOf(x))); setColor(parentOf(x), BLACK); setColor(rightOf(sib), BLACK); rotateLeft(parentOf(x)); x = root; } } else { Entry<K,V> sib = leftOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); setColor(parentOf(x), RED); rotateRight(parentOf(x)); sib = leftOf(parentOf(x)); } if (colorOf(rightOf(sib)) == BLACK && colorOf(leftOf(sib)) == BLACK) { setColor(sib, RED); x = parentOf(x); } else { if (colorOf(leftOf(sib)) == BLACK) { setColor(rightOf(sib), BLACK); setColor(sib, RED); rotateLeft(sib); sib = leftOf(parentOf(x)); } setColor(sib, colorOf(parentOf(x))); setColor(parentOf(x), BLACK); setColor(leftOf(sib), BLACK); rotateRight(parentOf(x)); x = root; } } } setColor(x, BLACK); }
参考资料
红黑树深入剖析及Java实现
详解AVL树(基础篇)
java中treemap和treeset实现(红黑树)
红黑树与AVL树的区别
Skip List vs. Binary Tree